

NASA Contractor Report 4666

Particle-Mesh Techniques

Peter MacNeice
Hughes STX
Lanham, Maryland

Prepared for
Goddard Space Flight Center
under Contract NAS5-32350

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1995

This publication is available from the NASA Center for Aerospace Information,
800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.

Particle-Mesh Techniques

P. MacNeice
Hughes S T X , Goddard Space Flight Center

Greenbelt, M D 20771
macneice@alfven.gsfc.nasa.gov

September 16, 1994

i

Abstract

This is an introduction to numerical Particle-Mesh techniques, which
are commonly used to model plasmas, gravitational N-body systems
and both compressible and incompressible fluids. The theory behind
this approach is presented, and its practical implementation, both for
serial and parallel machines, is discussed. This document is based on a
four hour lecture course presented by the author at the NASA Summer
School for High Performance Computational Physics, held at Goddard
Space Flight Center.

iii

P x

1 Introduction

Particle simulation techniques attempt to model many-body systems by
solving the equations of motion of a set of particles or pseudo-particles which
are used to represent the system. Particle-mesh(PM) techniques represent a
popular variant on this theme, in which a numerical mesh is added to more
effectively compute the forces acting on these model particles.

Otherwise known as Particle-In-cell(PIC), particle-mesh codes come in
two basic flavors, pure particle-mesh, and a combination of particle-mesh
and particle-particle known as P3M [l]. In this chapter we will only consider
pure particle-mesh.

The particle-mesh technique was originally invented at Los Alamos(circa
1955 - Harlow et a1) for application in compressible fluid flows [4]. It was
essentially reinvented in the mid sixties by Buneman and by Hockney for
application to plasmas. Since then it has been applied most often to plas-
mas, but also to gravitational N-body systems, in solid state device design,
compressible fluid flow, incompressible fluid flow(the vortex method), and
MHD.

In the fluid and MHD applications, the particles are introduced as a
numerical artifice to add an appealing lagrangian character to the model.
We will mention these applications only briefly. Our main focus will be
those applications which model true particle systems. More specifically we
will concentrate on those in which the systems particles interact with each
other through long range forces. In what follows, unless otherwise stated, we
shall assume that our objective is to model a system of particles interacting i

through long range forces.
P3M is used almost exclusively for modelling gravitational N-body sys-

tems.
Tracking particle trajectories enables us to explore physical effects which

are inaccessible to other modelling techniques. For example the more com-
mon fluid modelling approaches average over the velocity distributions of
the particles in the system. To do this they implicitly assume a form for
this distribution, which is invariably close to equilibrium. But much of
the interesting physics of these systems is associated with timescales before
these equilibrium velocity distributions can be established. To explore this
physics we need to resolve this structure in velocity space. There are two
techniques we might use to study structure in velocity space, a continuum
approximation based on a Boltzmann or Vlasov type equation, or a particle
code. Particle codes are

1

0 simpler to code up and analyze than Vlasov solvers

0 more robust

0 have a lagrangian character which lends them a certain economy

0 can be applied in 2 or 3D where Vlasov solvers are generally imprac-
tical.

However they are generally noisier than Vlasov solvers.
The appeal of particle codes is rather obvious. By modelling a system,

such as a plasma using particles, we are automatically incorporating much
of the systems structure in our model. This has many computational ad-
vantages. Instead of working with a complex set of fluid equations, or a
Fokker-Planck equation, we get to work with the equations of motion of
the particles which are simple ODES. We never have to worry about nega-
tive mass or energy densities developing. Also particle codes have a natural
adaptivity in the sense that computational effort is automatically focussed
where the particles accumulate.

Of course particle codes have limitations of their own. For example in
most cases the real physical system has many more particles than we can
cope with on a computer. As a result the forces acting on the individual
particles in a numerical model are much noisier' than in the real physical
system and we are required to take measures t o limit this noise. For systems
in which the particles interact through long-range forces, the most naive
implementation scales in a prohibitively expensive way and we are forced
to develop more efficient algorithms. These problems limit the range of
physical systems t o which particle methods can be successfully applied.

The best way t o understand the limitations which apply to particle-
mesh codes is by trying to construct a code. So let us consider how we
would construct a particle model of an electrostatic plasma.

1.1 Particle-Particle

Let us assume that at time t we have N p particles in our system located at
q (t) with velocities v;(t), where 1 5 i 5 Np.2 The force on particle i is

'Noisier in the sense that statistical fluctuations become more significant. We will

2Unless otherwise stated, variables subscripted with the letters i or J' will be assumed
explore this point in more detail later.

to identify properties associated with particles.

2

Load initial particle
positions and velocities

Calculate force on each
particle using equation (1)

of motion through At

Figure 1: Flowchart for a Particle-Particle code.

given by

N p 2; -xj
F; = qi qj

- xj13
j=l,#i

where q; is the charge on particle i . The equations of motion for particle i ,
with mass mi are

dx;
- = 21;
d t

dv; F;
d t mi

The flowchart for a simple program to model this electrostatic system might
look like figure 1. The force on particle i is computed by summing its interac-
tion with every other particle. We would describe this as a particle-particle
code. It has a severe limitation. The number of arithmetic operations re-
quired in the force evaluation scales as N;. In a 3D simulation the interac-
tion between 2 particles requires approximately 10 floating point operations.
For a code running for Nt timesteps the force evaluation requires roughly
10 x Nt x N ; / 2 floating point operations. On one processor of a YMP C-90
which has a clock speed of 4 nanoseconds, a 1000 timestep calculation using
a modest 106 particles would last more than 200 days.

- - - -

3

So the particle-particle approach will only allow us t o model a system
in which the physics is determined by the interaction of a small(< lo5)
number of particles. For any other system we need to reduce the scaling of
the operation count in the force evaluation below order N;. This is done
in one of two ways, by using a particle-mesh technique, or by using a tree
code. Particle-mesh techniques are most effective when the particle density
distribution is relatively uniform. Tree codes are favored in systems with
large density contrast.

’

1.2 Particle-Mesh

In the particle-mesh approach we replace the force equation (1) with an
evaluation based on continuum representations of the charge density and
electric field. Poisson’s equation

v2(b = - p (z)

relates the charge density p (z) to the electric potential 4. The electric field
is

E (z) = -v(b (3)
and the force on particle i is

We then use finite difference approximations on a mesh to solve equations
(2)-(4). The steps in this process are

0 calculate p at each mesh point using the particle position information.
This operation scales as order Np.

e solve equation (2). If we use Fast Fourier Transforms(FFT’s) this
scales as NglnNg where Ng is the number of mesh points.

e evaluate E at each mesh point using equation (3). This operation
scales as Ng.

e use interpolation and equation (4) to evaluate the force on each parti-
cle. This scales as N p .

Combining these steps we can see that the number of floating point opera-
tions for the complete scheme scales as

4

Load initial particle
positions and velocities

1
Deposit particle charge
on mesh
- a scatter operation

Solve particle
equations of motion on the mesh

Interpolate E to particle
positions and compute F

I - a gather operution I

Figure 2: Flowchart for a Particle-Mesh code.

where a,P and y are constants. The flow chart for this scheme is shown in
figure 2.

1.3

Obviously when we introduced the mesh which we shall assume is uniformly
spaced with cell size A, we sacrificed our ability to accurately model phe-
nomena at length scales shorter than A.

Consider the field produced by a single charge. When we assign this
charge to the mesh we must decide which mesh points in the particles vicinity
acquire charge. The mesh spacing A is the length scale characterizing the
coarseness of this assignment. In a sense the particle has acquired a finite
size. The force field produced by this ‘finite-sized’ particle will accurately
reproduce that of a point particle at distances from the particle which are
large compared with A. But no matter how we assign the charge, the force
will become more inaccurate as the distance from the particle decreases
toward A.

For Which Systems Does PM Work?

5

Now let us pose the question, for what types of physical system are
particle-mesh codes appropriate?

Suppose that the nature of the system is such that the force on any par-
ticle is dominated by the contributions from its nearest neighbors. Systems
of this type are often called ‘collisional’ or ‘correlated’. In these cases the
force evaluation will be inaccurate unless we make A small compared with
the typical distance of closest approach. Let us make the rather conservative
assumption that the distance of closest approach (Zczose) is as large as l / l O t h
of the average inter-particle spacing. Then this accuracy criterion requires

where L = (NgA3)l13 is the characteristic physical dimension of the system.

For example if

($)*I3 5 .01

which produces a force error of 5 1% at closest approach, then

ie. more than lo6 grid cells per particle are required. Clearly particle-mesh
is an expensive way to achieve even modestly accurate individual particle
trajectories in a ‘collisional’ system, both in terms of the necessary flops and
storage. It should come as no surprise that there are more efficient ways t o
achieve this accuracy (eg. tree codes which scale as NJnN,).

Now consider the opposite case, where close neighbors contribute very
little to the force on a particle which is dominated by the sum of its inter-
actions with distant particles. This type of system is called ‘collisionless’
or ‘uncorrelated’. At first sight this may seem an unlikely circumstance for
a force law which falls off as T - ~ , but in fact plasmas, and most N-body
gravitational systems fit this description. In these cases the important con-
tributions to the force are accurately represented, since from the point of
view of any particle most of the other particles in the system will be many
cells away. So particle-mesh should be appropriate for collisionless, not col-
lisional, systems.

6

1.4 Noise Reduction

The granularity of a particle representation inevitably introduces short-scale
fluctuations into the force field, which are superimposed upon a more slowly
varying component. The mean amplitude of these fluctuations is propor-
tional t o Jn, where n is the particle number density. The ratio of the mean
amplitudes of the fluctuations to the slowly varying component varies as
l/&. In the real system these fluctuations cause particles t o be scattered
at a frequency which we call the collision frequency. Because our numerical
model typically uses far fewer particles than are present in reality, the effect
of these fluctuations is greatly enhanced. This produces anomalously large
collision frequencies.

We need to take steps to reduce the significance of these fluctuations.
Fortunately we do not need to reduce the fluctuation amplitudes t o their
correct values, but merely to levels at which they no longer dominate the
forces on the particles, or influence the particles significantly during the
course of our simulation. Remember, each particle contributes charge to
some number, C, of cells in its neighborhood. The average value of C
depends on the number of spatial dimensions, d , in the model, and on the
shape and size of the particles. Suppose each particle is a uniform charge
cloud of length w in each dimension. Then for w = A in 1D we get C = 2,
in 2D we get C = 22 = 4 and in 3D we get C = 23 = 8. In general we have

C = (l + ,) . w d

The granularity with which the particles represent the charge distribution
is reduced by increasing the number of charge contributions which are made
in each cell. This requirement is expressed in the inequality

CN, >> N,,

or
1 w -d

Ng C A *
%>> - = (I+-)

We can see that there are two ways t o satisfy this inequality and reduce the
importance of the statistical fluctuations, either by increasing N,/N, , the
number of particles per cell, or by increasing w/A, the ratio of the particle
size to the grid size.

7

* * * *

I I I t
I I I I
I I I I
I I I I

I
I I I I
I

1 1 - I - I I I b
I : xg I : x

Figure 3: Charge assignment for NGP in 1D. The asterisks denote the lo-
cation of particles, and the filled circles the mesh cell centers. The arrows
associated with each particle indicate to which grid cell all the particles
charge is to be assigned. The dashed vertical lines denote mesh cell bound-
aries.

1.5 Charge Assignment and Force Interpolation

Once we introduce the grid we can no longer view the particles as point
particles. We have to specify how the particle charges are assigned t o the
mesh and how the electric field at the mesh points is used to determine the
field acting on each particle. As we noted this leads naturally t o the idea of
a finite sized particle.

The simplest charge assignment is called ‘(Nearest Grid Point” (NGP).
As the name suggests this associates a particles charge with the grid point
nearest t o the particle, as shown in figure 3. The most popular scheme
is “Cloud-in-Cell”(C1C). In this case each particle can be regarded as a
uniform distribution of charge, of width w, centered about the particle’s
nominal location, as shown in figure 4. Usually w is set equal to the mesh
cell size A. CIC is slightly more expensive computationally than NGP, but
has better numerical properties.

8

Figure 4: Charge assignment for CIC in 1D. As in the previous figure the
asterisk denotes the particle location. The different hatched areas indicate
the relative proportions of the particle’s charge assigned to mesh cells g and
g + 1 .

1.6 N-body Theory

Before we can understand why PM works for plasmas and some gravitational
N-body systems, we need to understand a little about how these systems
behave .

Our goal in N-body theory is to understand the evolution of macroscopic
properties of the system. We can specify the initial conditions and boundary
conditions for the macroscopic variables which interest us. The evolution of
these macroscopic quantities depends on the behavior of the N bodies, but
the macroscopic quantities do not uniquely identify the micro-state of the
system. By micro-state we mean that the state of the system is defined in
terms of the positions and momenta of every particle. There are an infinite
number of micro-states which are consistent with a given macro-state.

The theory for this problem is a statistical one. It imagines an infi-
nite number of copies(micro-states) of the system, each consistent with the
macro-state. The description of a typical micro-state is based on an ex-
pansion about the average of this ‘ensemble’ of micro-states, the so called
ensemble average. The ensemble average defines a smoothed continuous

9

force field. A true micro-state has the granularity that accompanies a dis-
tribution of discrete charges. It can be represented by the sum of the average
force field, and a term describing fluctuations in the force field. If F M is the
force field of the micro-state, and we use () to denote ensemble averaged
quantities, then

F M = (FM)+SFM
where SFM are the fluctuations in the micro-state. We are not interested
in the exact form of 6FM for any particular micro-state. We are interested
in the statistical properties of these fluctuations in the ensemble of micro-
states.

Let z = (~ , p) denote a point in 6 dimensional phase space, and 2; =
(.;,pi) the ith particles coordinates. The micro-state is given by X =
(~ 1 , 2 2 , . . . , Z N) . The distribution function for X is denoted by f N (X , t) ,
where f ~ (X , t) d X is the probability that the system is in a micro-state in
the element d X at X . It evolves according to the Liouville equation

a f N Pi a f N + F i . "-) = 0.
-+ at l < i j N c (;*- dPi

The microscopic phase density is

N M (Z , t) = S(Z - z ; (t)) .
1 <is N

where V is the systems volume in r-space. This equation defines f ~ (z , t)
which is the probability that a particle will be found at z at time t , regardless
of where all the other particles in the system are located. Many of the
interesting macroscopic properties of the system can be determined from f 1 ,
so we would like to solve for it. Since d N M / d t = 0 we get

= o d N M d r d N M a p d N M +-.- +-.-
at at ar at ap

10

or
d N M + F * - = O . d N M

+ w e -

d t d r d P
Taking the ensemble average of this equation gives

d N M

) = 0.
d d d N M
d t d r dP
- (N M) + w . - (N M) + (3'. -

Writing F M = (F M) + SFM and (N M) = (N / V) fi gives

dfl M afl d dfl
at dT dP dP

+ - + (F) . - = - (SFM --SNM). -

If we set the right hand side of this equation, which is often referred to as the
collision integral, to zero we get the Vlasov equation. This depends only on
the ensemble averaged field (F M) . It does not incorporate any effects due to
the granularity which is present in any real micro-state. If we wish to include
effects due to this granularity, we need to include the right hand side term
which depends on the ensemble average of correlations in the fluctuations
of the micro-states. For plasmas the simplest non-zero approximation for
this term produces the Landau equation. A yet more detailed approxima-
tion leads to the Balescu-Lenard equation which incorporates the dynamic
polarization effect known as Debye shielding.

What does SFM look like for systems in which the particles interact
through an r -2 force?

Consider a distribution of stars, all of mass m, with number density
n(r , 0, (6) in spherical coordinates. Let us assume for simplicity that n has
no significant T dependence. The gravitational force on a star at r = 0 due
to the stars in a volume element r2dr sin OdOd(6 at r is

1
m2Gn(0, q5)r2dr sin SdOdqh .i. -

r2 '
where .i. is a unit vector in the radial direction. The force on the star due
to all the stars in a shell of thickness d r and radius r is

d (F M > = d r [/ n(8, q5).i. sin OdOdq5 m2G.

The term in the square brackets has no dependence on distance. So in this
idealized case all shells of a given thickness contribute equally to the force on

1
11

the star at r = 0. Since there are more shells at large r than small r , distant
interactions will dominate (F M) . It is this behavior which introduces long
wavelength collective modes to the system.

The fluctuation term SFM has a different T dependence. The contribu-
tion to the fluctuations from a given volume element scales as the square
root of the number of stars in that volume element,

1
r2

rn2GJn(8, 4)r2dr sin 8ded4 .i. -,

= [rn2G l/----- n(8,4)sin8dBd4 .i.] ~ . -

Summing over 8 and 4 gives the contribution d(SF') from the shell d r at
r . Once again the factor in the square brackets is independent of distance
so

f i d(SF') K -.
r

In a plasma close to equilibrium, Debye shielding adds an exponential factor
e-'lXd to this behavior causing even faster fall off with distance. Ad is the
Debye length.

Our conclusion from this crude hand-waving argument is that fluctua-
tions in the force are a short scale phenomena. If they are significant then
we will need to model them accurately in our simulation. This means re-
solving the interactions between close neighbors. We have seen however that
PM codes are very inefficient for this type of system. On the other hand,
if fluctuations in the force are not important, the system evolves under the
influence of the long range ensemble average (F M) . PM codes accurately
represent forces on scales greater than a few mesh cell sizes, so we can expect
them to do a good job for these 'collisionless' systems, for which they can
be used to study collective modes in the wavelength range A 5 X 5 Nll'A.

How do we determine whether force fluctuations are important in a real
plasma or gravitational N-body system? The more particles that are in-
volved in representing a given mass or charge distribution, the less granular
the resulting force field will be and the less significant SFM will become.
In an homogeneous plasma only those particles within a distance Ad con-
tribute to SFIM. Therefore as Nd = nAi increases, the plasma becomes more
collisionless. We can assume

Na >> 1

as a condition for collisionless behavior.

12

For gravitational N-body systems the criterion is less clear-cut. Imagine
a galaxy of radius R with N stars. For simplicity let us assume that within
the galaxy the distribution of stars is uniform. For a star at the center of
the galaxy the mean force (ie. the ensemble averaged force) is zero. Only
the fluctuations persist. If we sum the individual binary interactions of a
test star with all the stars in the galaxy, assuming each interaction can be
considered independent, we can derive an expression for the rate at which
the test star is deflected from its trajectory. Using Rutherford scattering
theory we derive an expression for A v i due to a typical interaction with a
field star. Here I denotes the plane perpendicular t o the initial velocity of
the test star. Then we sum this expression over all possible interactions as
the star crosses the galaxy once.3 The result is

Av2 81nN I,.-....-.
0 2 N

So the condition we need to satisfy is that Avf/v2 << 1, ie.

81n N
N << 1.

This is a very crude and idealized estimate, but it gives us a more quanti-
tative criterion for deciding if P M is an appropriate technique for a grav-
itational N-body p r ~ b l e m . ~ From this expression it is clear that galaxies
(N N 10”) are collisionless, globular clusters (N N lo4 - lo6) are marginally
collisionless, while stellar clusters (N N lo2) are dominated by fluctuations.

There is a caveat to bear in mind with regard to gravitational systems. It
is possible that some stars in the system might be unaffected by fluctuations
while at the same instant other stars are being dominated by fluctuations.
This occurs because of spatial clustering which tends to develop in gravita-
tional systems but not in plasmas. Conditions in the neighborhoods of two
spatially separated stars can be significantly different.

In both plasmas and gravitational N-body systems the particles inter-
act with each other through a r-2 force, and so we might expect them t o
be similar in nature. However in the gravitational case the forces are al-
ways attractive. In plasmas the interactions between particles can be either
attractive or repulsive. As a result these systems have major differences.

3This of course violates our assumption that the star is at the center of the galaxy, but
our purpose here is to derive a crude estimate for which we consider this approximation
acceptable.

See chapter 8 of
Binney and Tremaine [8].

*Less crude criteria can be developed from the Landau equation.

13

Gravitational N-body systems are subject t o a collapse instability which
does not occur for plasmas. When a density perturbation develops, the
result is to more strongly attract surrounding material toward the denser
region, reinforcing the original perturbation. Plasma density perturbations
do not feed themselves in this way.

The result is that gravitational systems generally possess very high den-
sity contrast, with particles distributed in clusters which may be part of a
hierarchy of clusters. Plasmas tend to be much more uniform.

In addition plasmas are affected by a phenomenon known as Debye
shielding. Every particle in the plasma has a tendency to attract those
particles in its neighborhood with charge of opposite sign and repel parti-
cles with charge of similar sign. This weakly correlated behavior has the
effect of screening fluctuations on scales longer than the Debye length Ad.

1.7 Key features of a collisionless plasma

Most of the pioneering studies of the properties of PM schemes were colli-
sionless plasma calculations. So let us take a moment here to review some
of the key features of collisionless plasmas in light of the points made in the
previous section.

The interaction force\ T - ~) is a long range force. In principle and in
practice the system supports long wavelength modes involving coherent col-
lective motion of many particles.

The highest characteristic frequency associated with collective modes is
the electron plasma frequency

4nne2
%e = (-> .

m e

The range of wavelengths of these coherent modes is bounded at the lower
end by the Debye length Ad. Electron thermal motions dampen modes with
X < Xd so strongly (Landau Damping), that we can say collective modes
only exist for X > Ad.

Particles separated by less than Ad see each other as individuals - parti-
cles separated by more than Xd interact with each other as participants in
collective wave modes.

The collision frequency vc(r T ~ ~ I I) is the rate at which sub-Ad fluctuations
scatter a Darticle.

2nvc nlnA 1 - 0: - 0: -1nNd
u p e & Nd

14

ie .
2 T U C
- << 1 + Nd >> 1
WP.

In collisionless systems, the X > Ad coherent collective modes are the objects
we wish to study.

A collisionless system has a very large number of particles in a Debye
sphere. A collisional (fluctuation affected) system has relatively few. To
properly model a collisional system we must faithfully reproduce Nd. For
a collisionless system we can ignore sub-Ad fields. The challenge there is t o
make sure that while grossly under-representing the number of particles we
maintain

27T u,
- << 1.
WP.

One wary to achieve this is by filtering out the sub-& scale components of
the electric field. Since Amin = 2 4 is the shortest wavelength which the grid
will support, we can arrange this if we set A N Ad.

2 ES1 - A ID Electrostatic Code

ES1 is a well-known and documented 1D electrostatic code, written by Bird-
sall and Langdon, which is widely used as a teaching aid. For a more com-
plete description of the code and a variety of simulation projects to which it
can be applied, the reader is referred to reference [a]. At this point we shall
present a quick outline.

2.1

The particle equations of motion are

d x ;

Integration of the Equations of Motion

-- - v; d t

dv; F;
d t m;

ESl uses a leap-frog scheme which is second order accurate in time for
constant integration timestep At. The discrete equations are

- - _ _ -

15

totAt/2 tot3At/2
1
I
I
I
I
I

t '

I
I I b-
to t,tAt tot2At t

Figure 5: The leap frog time integration. Note that the times at which v
and 2 are known are offset by At/2.

where superscripts denote time levels. This is illustrated in figure 5. Note
that the times at which a particles position are known are offset by At/2
from the times at which its velocity is known. For an harmonic oscillator (ie.
F cx x - xo) of frequency wo, leap frog has no amplitude error for woAt 5 2,
and has second order phase errors. Thus choosing At to satisfy wont = .3
gives reasonable accuracy provided we do not run the integration beyond
roughly 100At.

2.2

ES1 solves the 1D form of Poisson's equation

Integration of the Field Equations

and computes the electric field using

34
d X

E ---. x -

16

Taking fourier transforms of these equations gives

and
@ (k) = - i k $ (k) .

For a discrete periodic system of length L , the fourier transform and inverse
transform are defined by

Ng-1

f” (k l) = AX E f(xg)e-iklzg
g=o

where kl = 2 ~ 1 / L . We could form the discrete transform P(k1) and then use
equations (12) and (13) to find @(kl) , and finally apply the inverse transform
t o get E(x,). However this mixes discrete representations P(k1) and @ (k l)
with continuous representations k 2 and -ik for the operators d2/dx2 and
d/dx. So instead we replace equations (10) and (11) with their finite
difference approximations

= -pg. 4g+l - 24g + 4g-1

Ax2
and

@g+l - @g-1 Eg = -
2 4 2

where Ax is the mesh cell size. Taking discrete transforms of these finite
difference approximations gives

where

2
and

Kl = k l (sin iklAx) .
$klAX

5We will explore this further in section 4.7

17

Figure 6: The variation of charge from particle i assigned to mesh point g
as the particle's location x; is altered, for NGP assignment.

2.3 Assignment of Particle Charge to the Mesh

We are given two choices by ES1. The lowest order and least expensive is
Nearest Grid Point(NGP). In this case all of a particles charge is assigned
to the mesh cell in which the particle is located, as shown in figure 6. As a
particle crosses the boundary between two cells, the charge assigned t o both
cells jumps discontinuously. This produces some noise in both p and E .

The higher order alternative provided is Cloud-In-Cell(C1C). In this case
each particle can be considered as a uniform charge cloud of width w. The
default width is w = Ax, the mesh spacing. This scheme is illustrated in
figure 7. If the particle position 2; is located between the two mesh cell
centers xg-l and xg, the charge assigned to each of these cells is given by

and
xg - 2;
Ax pg-1 = qi-.

18

I
I
I
I
I
I
I
I

- . - . b-

i xg i : x,

Figure 7: The variation of charge from particle i assigned to mesh point g
as the particle’s location x; is altered, for CIC assignment.

2.4 Force Evaluation

To ensure momentum conservation the same interpolation scheme is used to
compute the force on a particle as was used t o perform the assignment of the
particles charge to the mesh. If we used NGP then the force on the particle
is simply the force evaluated at the mesh point nearest to the particle. For
CIC it is given by the formula

for x g - l 5 2; 5 xg. There is also an energy conserving option which uses
CIC charge assignment and NGP force evaluation. However this does not
conserve momentum.

3 Time Integration Schemes

In this section we provide a brief review of the properties of a number of the
most frequently used time integration algorithms. We have followed the for-
mat adopted in chapter 4 of Hockney and Eastwood [l] to which the reader

19

is referred for more detail. We will consider three algorithms of different
order, the first order Euler scheme, also known as upwind differencing, the
second order leapfrog algorithm which we have already encountered, and a
fourth order Runge-Kutta algorithm. For the sake of brevity we will attempt
to derive the properties of the leapfrog scheme only, while simply quoting
the corresponding results for the two other schemes.

Applying the Euler scheme to the particle equations of motion gives

The leapfrog scheme was given in equations (8) and (9). The fourth order
Runge-Kutta scheme for a system of equations given by

- d z = f (z , t)
dt

where z and f are vectors (ie. in our case z = (2 , ~)), is defined as

with

1 kq = A t f (3 + s k 3 , t n

There are four important criteria to be
algorithm to integrate the particle equations

1 + s a t) .

considered when choosing an
of motion,

e convergence

e accuracy

e stability

e efficiency.

20

3.0.1 Convergence

By convergence we mean that the numerical solution converges to the exact
solution of the differential equation in the limits as At and Ax tend to
zero. For linear schemes Lax has shown that consistency and stability are
necessary and sufficient conditions for convergence. Consistency requires
that the difference approximation should reduce to the differential equations
in the limit as At + 0. It should also preserve time reversibility. All
three schemes reduce to the correct differential equations in the limit as
At -+ 0. However of the three only leapfrog satisfies the time reversibility
requirement.

3.0.2 Accuracy

By accuracy we mean the truncation error associated with approximating
derivatives with differences. If we combine the two equations defining the
leapfrog approximation into one we get

(18)
F(X" 1 xn+l - 2xn + xn-1

- -
At2 m

which can be compared with the exact expression

d2x F
a t 2 rn'

- - - -

Using Taylor series expansions for xn+l and xn-' about xn gives

xn+l = xn +
xn-l

Combining these gives

Thus leapfrog is second order accurate in time.
It is relatively trivial to show that the Euler scheme is only first order.

Showing that the Runge-Kutta scheme is fourth order is a very long and
tedious task which will be left up to those readers with superhuman patience.
It should be pointed out that order is generally but not always a reliable
guide to the accuracy of a scheme. Each scheme has its complement of
pathological applications which can cause it to break down.

21

3.0.3 Stability

Do errors grow in time? If round-off error (ie the error introduced because
the computer only stores numbers up to a certain precision) grows in time
then the scheme is unstable.

Consider again the leapfrog equation (18). Let zn be the numerical
solution at time tn, and X" be the exact solution (ie no round-off error) t o
this difference equation. We shall denote the numerical error at time tn by

Using equation (19) to replace z in equation (18) gives us an equation for
the evolution of the error E with time,

If we assume that we are looking at bounded oscillatory solutions of the
form

E" = (X)n = (,xw*t)n

then by substituting this into the previous equation we get

X2 - 2X + 1 = -(RAt)2X

where we assume also that

This has solutions

and the general solution is

E" = aXT + bX?.

The scheme will be stable provided 1Xj-l 5 1. Figure 8 shows how X k varies
as a function of RAt. When RAt < 2, has an imaginary part, but

22

h

1 P-

Figure 8: The roots of equation (22) as a function of RAt. For RAt < 2
both roots have an imaginary component, but both have magnitude 1x1 = 1.
For RAt > 2, both roots are real and 1A-l > 1.

for RAt 2 2 both solutions are real. For RAt 2 we can easily show
that IX* l = 1. This means that not only is the leapfrog scheme stable for
RAt 5 2, but it has the additional advantage that it suffers no amplitude
dissipation. When RAt > 2 however 1A-I > 1. Therefore to guarantee
stability, we can calculate the largest value of Im-'dF/dX1 and then set At
such that

The stability equation for the Euler scheme as given in equations (16)
and (17) has roots

A* = 1 f iRAt

which has IA*(2 1, and so is unconditionally unstable. The Runge-Kutta
scheme is also unstable when applied to the particle equations of motion.

23

When we make the simplifying assumption that the force acting on the
particle is proportional to the particle displacement , ie simple harmonic
oscillation, the stability equation has solution

5 1 3
X,t = 1 - -(QAt)2 12 + - - (Q ~ l t > ~ 48 f RAt(1- -(Qat)'). 24

In this case IX* l > 1 for all RAt except in a short interval about RAt N- 2.5.
This analysis is more complicated for non-oscillatory solutions. There

we need to check that en grows more slowly than Xn.
There is of course another requirement for accurate stable integration of

the equations of motion. No particle can be allowed to move more than one
mesh cell in distance during one timestep.

3.0.4 Efficiency

This is a critical consideration since whatever scheme we choose will be used
for each particle at each timestep, a total which can be comfortably in excess
of 10" times. It is generally true of a lower order scheme that they

0 involve fewer intermediate time levels per timestep

0 require fewer stored intermediate values

0 require fewer floating point operations per timestep

0 have a greater stability range

0 require finer timesteps to achieve the same accuracy

compared with a higher order scheme. The conventional wisdom is that the
simple second order leapfrog achieves the best balance between accuracy,
stability and efficiency. In ES1, with normalizations such that At = 1, and
with the variable replacements

then

X x - - . f Z = -
Ax

24

where
A(Z0Zd) = aE(ZoZd)

with a = qAt2/mAx. This implementation is remarkably efficient requiring
just 4 fetches from memory, 2 additions, and 2 stores in memory per particle
per timestep.

4 Spatial Discretization

The mesh is involved in three separate stages of the code,

1. assignment of the particle charge to the mesh

2. solving the field equations

3. interpolating mesh defined forces to the particle positions.

All three steps introduce some error. However we should remember that the
only error that matters is the final combination of errors. As we shall see it
is sometimes possible to manage these individual errors in ways which allow
them to partially cancel each other and so produce a superior result.

In discussing the ramifications of spatial discretization we will limit our-
selves to the two schemes which we have seen already, NGP and CIC. To
illustrate discretization errors we will consider a simple test problem, a pe-
riodic 1D electrostatic system with boundaries at x = fL/2, and a uniform
mesh with cell size Ax, and we shall assume the following discretized field
eauations,

4g+1 - 4g-1 Eg = -
2Ax

Before we proceed there are a couple of function definitions which we need
to establish. We define a cloud shape function S(x) which gives the charge
density associated with a finite-sized particle at x = 0. For NGP this is

and for CIC,
1

S (X) = 'n(x).
Ax

25

Ax LL- "

X k
Figure 9: The weighting functions and their fourier transforms used in NGP
and CIC schemes. The NGP weighting function W p ~ ~ p (z) is the hat function
II(z), and the CIC weighting function Wc~c(tc) is the triangle function A(.).

11 is the hat function shown in figure 9 and defined in equation (23). The
charge assigned to mesh point g from particle i located at z; is computed
from the weighting function

"S+ 9
pg- az W(5; - 5 g) = 1 S(5; - 5')dz'.

The total charge at g is

26

If the number density of particle centers is

NIJ
n (z) = Z S (z - z;)

i=l

we can define a continuous charge density pc by analogy

p c - - q L I 2 W(x‘- z)n(z’)dz’.
Ax -LIZ

Note that pg = pc(zg) , in other words pg can be obtained by sampling the
continuous density distribution pc.

4.1 NGP

For NGP the weighting function is given by

I - x I< Ax/2

12 I> Az/2.
(23) W(x) = rI(z) =

The mesh charge density is obtained by sampling the continuous density

where
NIJ

n(x) = Z S (z - x;).
i=l

The force on particle i is given by the force evaluated at the nearest cell
center. If xg - Ax/2 5 z; 5 xg + Az/2 then

Now, consider our simple test problem, a 1D electrostatic system with
periodic boundary conditions imposed at IC = f L / 2 , and just two particles,
a charge - q at X I , and a charge $4 at 2 2 , with 2 2 > 21. We shall label

27

.44

F

-.44

.39

F

739

-
inkrpdcle
separation

J

16A.X

Figure 10: The mutual force between a positive and negative charge as
a function of their spatial separation, in a periodic system of length 16Az,
using NGP(top frame) and CIC(bottom frame) charge assignment and force
evaluation.

28

the center of the mesh cell containing the negative charge 4, and the cen-
ter of the mesh cell containing the positive charge T2. Using NGP charge
assignment, the potential at the mesh points is given by

where ,O = q(T1 - :2) /L. The force on the particle at 52 is

This is plotted in figure 10 as a function of the inter-particle separation
22 - XI, for a system with L = 1602 . Note that as we vary the particle
separation the force jumps discontinuously when one of the particles crosses
a mesh cell boundary. Another unfortunate property of this force is that
it is not invariant under spatial translation. Suppose we vary (XI + x 2) / 2 ,
the mean position of the particles, while keeping their separation 22 - 21
fixed. Then the force fluctuates with period Ax, as shown schematically
in figure 11. This fluctuation in the inter-particle force is greatest at small
separations. Minimizing this loss of displacement invariance is one of the
most significant improvements we can make in designing a particle code. As
we shall now see using a higher order scheme, such as CIC, achieves this.

4.2 CIC

With NGP we used one mesh point to define charge assignment and force
interpolation, and we got a noisy result. CIC uses two mesh points. In this
case the particle can be viewed as a uniform density charge cloud of width
Ax. The charge assignment scheme is illustrated in figure 7. The weighting
function is given by

1- I 2; - I C g I /A2 I 2; - xg 15 Ax

otherwise i o (26)

W(x; - Zg) = A(2i - Xg) =

A (x) is called the triangle function, and is shown in figure 9. We will leave
it as an exercise t o the reader to derive the electric potential on the mesh

29

E t
Figure 11: Variation of the mutual force between a positive and negative
charge as a function of their mean position but with fixed separation, for the
two distinct cases when the particles are separated by more than Az(top),
and by less than Az(bottom). NGP charge assignment and force evaluation
are used.

for the test problem considered in the previous section. An example of the
interaction force between the two particle is plotted in the bottom frame of
figure 10 as a function of the inter-particle separation. For 2 2 - 2 1 2 2A2 we
recover the exact analytic answer for the 1D problem.6 For 22 - 2 1 < 2A2,
the inter-particle force depends also on the positions of the particles with
respect to the mesh. Figure 10 illustrates one example, where 2 1 was chosen
to be -0.4Az from cell center while 22 was varied.

It is immediately apparent by comparing the two frames in figure 10
that CIC gives much smoother forces than NGP. It is also obvious that
the dependence of the inter-particle force on the mean particle position
(2 1 + 22)/2 is much weaker than in NGP. Finally, the errors that do remain
are more localized spatially than for NGP.

'This occurs because in 1 D the exact analytic solution for the potential is piece-wise
This linear in x.

fortuitous match does not occur in 2 or 3D.
CIC interpolation is capable of representing this variation exactly.

30

4.3 Momentum Conservation

Both the NGP and CIC examples above conserve momentum. We can in
fact show that momentum will be conserved provided we use centered dif-
ferencing, and we use the same weighting function W for charge assignment
and force interpolation. To prove that a scheme conserves momentum we
need to demonstrate

0 that no self-forces act on the particles

0 that interacting particles impose equal but opposite forces upon each
other.

It is convenient at this point to develop some additional array notation.
Let us consider a vector p such that each element of p is the charge density
at a different mesh point, ie p = (P I , , . . ,pg,. . . , p ~ ,) . Let us also construct
similar vectors @ and E from the mesh values of the electric potential and
electric field. Differencing Poisson's equation leads t o a matrix equation

A@ = -p

where A is an N g x Ng matrix. Similarly, differencing

produces
E 1 -B@

where B is another N g x N g matrix. Combining these equations gives

E = B A - ' ~
= c p .

Choosing the differencing scheme

4g+1 - 249 + 49-1 9 +
8 x 2 Ax2

means A and A-l are symmetric. With

4 g + 1 - 4g-1
---f

w
d X 2 4 2
-

B is anti-symmetric. Therefore C = BA-I is also anti-symmetric.

31

4.3.1 Self-Forces

Consider a charge q at x . Let us assume for now that the weighting functions
used to assign charge to the grid and to interpolate the force from the mesh
to the particles are not necessarily the same, and we will denote them by
W p , and W F respectively. Consider a charge q at x . The force on this
particle is

F (x) = q C W F (x - i g) E (z g) .
9

The field E is given by

9’

and so therefore

F (4 = X X q W F (x - .g)Cgg‘P(xg’>*
y 9’

To calculate the self-force on the particle we consider only the contribution
to p from the particle itself, ie.

p(xg’) + S p (Z g ’) = qW”x - Zg’) .

The resulting self-force is

Fse1f(Z) = q2CggrWF(x - x g) W Q (x - xg’).
9 9’

Now if we assume that W F z WP, then the necessary condition to achieve
Fselj = 0 is that C be anti-symmetric. We saw above that centered differ-
encing makes C anti-symmetric. Thus we have established that the combi-
nation of centered differencing and W F = Wp eliminates self-forces.

4.3.2 Mixed NGP/CIC schemes

What if W F + WP? Consider a single particle with charge q located at
x in an infinite 1D system. Let us use x , to denote the center of the cell
containing the particle.

First consider the combination of NGP charge assignment and CIC force
interpolation. We can easily show that the potential 2.t mesh point g is

Q
2

(bg = --lxg - xml.

32

Using CIC for the force evaluation we get

q2(x - x ,) / ~ A x 5, < x < X, + A x 1 2
F = {

- - Q ~ (x , - x) / ~ A x X, - Ax12 < x < 2,.

The self-force acts t o drive the particle away from the cell center. This can
produce instability.

Now consider CIC charge assignment and NGP force interpolation. Let
us further assume that the particle lies in grid cell m as before and is located
between x , and x , + A x / 2 . Using CIC charge assignment gives

Setting 6, = 0 and assuming equal but opposite potential gradients at koa,
ie .

as g -+ 00, we can easily show that

Q
2 &+l = --(2(xm - x) + A x)

which implies that
F = - q 2 (-). X - X m

2 4 2
The particle will perform simple harmonic oscillation about the nearest grid
point with frequency

W& = {E. 2 m A x

From our analysis of the leap-frog scheme we know this will be stable pro-
vided the timestep is chosen to satisfy w,,ljAt < 2.

The general principle here is that we should always use a force interpo-
lation scheme which is of no higher order that the scheme used for charge
assignment.

33

4.3.3 Equal but opposite forces

Now consider two particles, q1 at 2 1 and q2 at 2 2 . The force on particle 1
due to particle 2 is

Similarly, the force on particle 2 due to particle 1 is

But since C is anti-symmetric

Note, this result again depend on C being anti-symmetric, and W F E WP G

W .
We have highlighted three properties which we would like the charge

assignment /force interpolation scheme to satisfy,

0 at particle separations large compared with the mesh spacing, the
fluctuations in the inter-particle force due to displacement relative to
the mesh should become negligible

0 as a particle moves across the mesh the force it experiences and the
charge it assigns to the mesh should change smoothly

0 momentum should be conserved.

Hockney and Eastwood [l] describe a hierarchy of schemes constructed on
these principles (NGP, CIC, TSC, ...). Alternatively, schemes can be devel-
oped by using multi-pole expansions of the charge distribution of each finite
sized particle about the nearest grid point to the particle. To zeroth order
this approach returns NGP. Including the dipole gives a scheme similar t o
CIC.

34

4.4 Aliasing

The spurious fluctuations which appear as a result of the loss of displacement
invariance, manifest themselves in k-space as non-physical mode couplings,
known as “aliasing”. Spatial structure on scales finer than Ax cannot be
represented on the mesh. Some of the power in this fine scale is erroneously
interpreted by the mesh as belonging to longer wavelength modes which the
grid does support.

For a 1D infinite system the density of particle centers is given by

&
n(x) = C6(x - x;)

and the continuous charge density is

This has fourier transform

with

By introducing a mesh we reduced our representation of p (x) from a con-
tinuous representation pc(z) to a sampled representation ps(xg) . The only
wavelengths which can be represented on the mesh are X 2 2 4 2 , ie k 5
7r/Ax = kg,;,j/2. The appropriate transform for this discrete representation
is the discrete fourier transform

g=--00

Equation (32) expresses ps(xg) in terms of the transform of the sampled
charge density, but we can also write it in terms gf the transform of the
continuous charge density (equation (31)),

00

ps(xg) = pc(xg) = 1 2n / -00 dk ,&(k)eikzg. (33)

35

Breaking up this integral into intervals of length kgTid, and setting k =
1‘ + nkgT;d, equation (33) becomes

Comparing equations (34) and (32) implies,

M

n=-m

But inkgTidxg = 2ning and therefore

When we represent p on a discrete mesh instead of a continuum, we limit the
independent wavelengths which the solution can contain to the wavenumber
range -kgT;d/2 5 k 5 kgTid/2, called the “principal zone” or “first Brillouin
zone”. The transform of the charge density in our discrete representation is
given by the sum of copies of the transform of the continuous charge density,
each offset by a different multiple of kgTid. This means of course that F S (k)
is periodic in k with period k g T i d . The extra contributions (from In1 > 0) to
p^,(k) inside the principal zone are called aliases.

Note that for the infinitely long mesh there is a continuum of allowed
wavenumbers in the principal zone. In the case of a finite sized mesh
there would be just a discrete set of wavenumbers given by k = 0 and
k = 2n/(nAx) where 1 5 n 5 Ng.

Aliasing is generally worse for k N kgT;d/2 than for k - 0, ie the shortest
wavelengths are most affected. Also, the smoother p is, ie the less power
there is at short wavelengths, the less likely it is that aliasing will be a
problem. Recall that

which implies by the convolution theorem that

P^,(lc) = -&(k)Jv(k) . !?
Ax

36

L
Principal Zone

Figure 12: The fourier transform of the discrete sampled charge density,
which is the sum of copies of the transform of the continuous charge density,
each offset by a different integer multiple of kgrid.

Equation (35) implies that the narrower i C (k) is in k-space, the less aliasing
will occur.' But from equation (36) we can see that we can narrow bc(k)
by narrowing m (k) , or in other words by making the charge assignment
smoother.

For NGP we saw that W N G ~ (X) = I I (x) , the hat function defined by
equation (23) and shown in figure 9. The fourier transform of this is

k A x sin(k A x / 2)
k N G p (k) = AX six(,) = A x

kAxc/2

If we use CIC then WCIC(X) = A (x) , the triangle function defined in equa-

'If j , (k) is band limited, in other words, a critical wavenumber k,,. exists such that
j c (k) = 0 for Ikl 2 k,,, then no aliasing will occur provided k y r t d 2 k,,. Under these
circumstances p can be represented exactly on the mesh. When kyr ,d = k,, the mesh
samples p at the Nyquist frequency.

37

tion (26), and also illustrated in figure 9. This has a transform

In figure 9 we can see that I/i’clc(k) is narrower than I/i’jvGp(k) and so less
susceptible to aliasing.

Aliasing will be produced by any mechanism which introduces wave-
lengths shorter than 2 4 2 . Low order charge assignment schemes do this.
Setting the particle size w smaller than the mesh size will also do this. We
get strong aliasing if we set w < Ax/lO. This limits the dynamic range
of wavelengths which we can include in our model to X < 10Ngw. This
lower limit on w can be relaxed somewhat by using higher order assignment
schemes.

Setting the Debye length much less than Ax will also introduce wave-
lengths shorter than 2Ax. In a mono-energetic beam for example, T = 0
and so Ad = 0. If we use ES1 to model this system we find that the beam
begins to spread in v space. Aliasing is feeding energy from X < Ax modes
into modes supported by the mesh, heating the beam and thereby raising
both T and Ad. This thermal instability persists until A d grows sufficiently
that the condition Xd << Ax is no longer satisfied.

4.5 The Field Solver

Formally, we can write
00

4s(xg) = AX G,(xg - xgl)ps(zgO
g’=--oo

or in k-space,

The function G, is a discrete representation of the Greens function for Pois-
son’s equation. The transform of the exact(continuous) Greens function for
0’6 = -p is l/k’. If we use G,(k) = 1/k2 then

& (k) = G S (k) b S (k) . (37)

38

For g' = g this gives G, = 0. When g' # g we have G,(xg//) = -Gs(-xgtt) #
0, ie in x-space l /b2 appears as a very non-local operator. If instead we use
the finite difference approximation for V2#,

4g+1 - 24g + 4g-1 = -&AX 2

which transforms to

where
00

$,(k) = Ax q5s(xg)e-ikzg,

giving

Differencing exaggerates the amplitude of higher k modes.

4.6 Force Evaluation

Recall that

and

E = - - 04

k(L) = - i k $ (k) .

dX

Again we can choose to use these exact operators, or finite difference ap-
proximations to them. If we replace dq5/ax with

4g+1 - 4g-1

2Ax

we replace the exact operator, -iL, in fourier space, with - ik sin (kAx)/kAx,

k(k) = -ik sinc(LAx) $ (k) (40)
= -in(kAx) &k) . (41)

In this case differencing acts t o dampen high k modes.

39

0 n/Ax

0 n/Ax
k

Figure 13: The function K, is introduced into the evaluation of the electric
field when we use the centered second order finite difference approxima-
tion. It acts to dampen the higher k modes. Similarly k 2 / K appears in the
potential solver but this exaggerates the higher k modes.

4.7 Optimal Schemes

In the last few sections we have used fourier analysis t o study why spatial
discretization errors occur and how they may affect the overall solution. We
can use this type of analysis to develop improved schemes in which the errors
introduced at each stage can partially cancel each other.

All four stages in our code which contribute to the evaluation of the force
on the particles, ie charge assignment to the mesh, solving Poisson’s equation
to obtain the potential, differencing the potential t o derive the electric field
and force values at the mesh points, and finally interpolating force values at
the particle positions from the mesh values, can be expressed as convolutions

40

in x-space and so as products in k-space. For example, rewriting

dg+l - dg-1 Eg = -
2Ax

as

where the operator D is defined as

The fourier transform of equation (43) is

k(k) = - B (k) J (k) .

Similarly interpolation of force to particle positions is given by

which has transform

F (k) = - L @ (k) k (k) .
Ax2

Combining equations (43),(44),(36) and (37), gives

F (k) = - L @ (k) f i (k) G (k) & (k) @ (k)
Ax2 Ax

and so

(44)

This equation enables us to combine the separate numerical steps in a way
which produces the most “accurate” expression for F(z).

41

5 Energy Conservation and Collision Times

The schemes we have considered so far are momentum conserving, but do
not conserve energy, although the misconservation can be kept to acceptably
small levels. Energy conserving schemes do exist, but they fail t o conserve
momentum. The crucial difference in energy conserving schemes is that VW
or VS, when needed, are evaluated analytically rather than numerically. We
should point out that the term “energy conserving” is a little misleading-
leading in this context, since these schemes only conserve energy in the
limit as At + 0. In other words, introducing time discretization breaks this
conservation.

In momentum conserving schemes the misconservation of energy is due
to aliasing. Likewise in energy conserving schemes the misconservation of
momentum is also due to aliasing. If we eliminate aliasing by using a band
limited cloud shape function S(z), we can conserve both energy and mo-
mentum. However this is an expensive option because it generally requires
a. very high order weighting function W (z) which is highly non-local, and
for this reason is almost never used.

We have seen that aliasing is less of a problem for schemes which use
higher order charge assignment. Therefore, for the momentum conserving
schemes which we have considered, we would expect the GIG scheme to
conserve energy better than the NGP scheme.

5.1 Heating Time

The principal symptom of energy misconservation is particle heating. Hock-
ney [6] made a systematic study of heating and collision times for a 2D
electrostatic plasma. Let hi(t) be the deviation of the kinetic energy of the
ith particle from its initial value. The average over all particles is

We define a heating time TH such that

How do we determine (~(TH)) ? Assume that the errors in our model con-
tribute to a stochastic error field S E . For simplicity we shall assume SE is

42

constant in magnitude but varies randomly in direction. For one timestep
it introduces a momentum change

m6v = qSEAt

for each particle. Each particle describes a random walk in v-space from its
initial velocity vo. Writing Av = w - W O , after n timesteps

(Av) = 0

q2 At2
(lAv12) = n----l6El2 m2

which implies

Stochastic heating increases linearly with the number of timesteps.
Hockney has shown that the heating timescale is a complicated function

of both Ax/Xd and w,,At. The heating rate increases as either Ax/Xd or
upeAt increases. CIC has a slower heating rate than NGP, by a factor of
roughly 20.

5.2 Collision Times

The effective collision frequency v, was determined in the 2D model by
measuring the deflection cp;(t) of particles from their original direction.

The collision time rc is defined by

Hockney [6] found the relationship

43

Recall that rpe is the shortest timescale associated with collective modes in
the system. As the particle size w 4 0 the collisionality of the system is
determined by the number of particles in the Debye circle (nX2). The finite
size of particles helps to increase the collision time. Note that since w is the
same for both NGP and CIC, both schemes have the same collisionality.

6 Higher Dimensions
The basic steps are the same. However everything is more complicated
to program and more costly to run. Anisotropies appear due to the use
of square or cubic particle shapes, and due to directional dependencies in
truncation errors of finite difference approximations. Waves propagate with
differing ease in directions aligned with or between axes. These anisotropies
can be reduced by using smoother cloud shape and assignment functions.

Visualization of results is considerably more difficult, particularly in 3D.

7 PIC for Compressible Fluid Flow

PIC was originally invented by Harlow for this application. His motivation
was to develop a tool to study highly distorted or sheared flows, or strongly
shocked flows involving material interfaces and contact discontinuities in 2
or 3D. Here the particles represent fluid elements. In time the approach was
dropped in favor of improved fluid codes because it was

e too noisy

0 had high numerical viscosity (momentum diffusion)

0 suffered from large heat conduction (energy diffusion).

It has been revived recently in codes like FLIP which are low dissipation
PIC codes.

In its original incarnation, fluid PIC was a partially lagrangian method
(mass was the only lagrangian variable). Modern fluid PIC is a fully la-
grangian method (ie. mass, momentum and energy are all lagrangian vari-
ables).

For old style fluid PIC a typical timestep would be as follows:

1. load N p particles, each with mass m;, velocity u; and internal energy
e; .

44

2. set up a mesh.

3. construct mesh point values of the fluid density pg, velocity U , and
internal energy Eg by assigning the equivalent particle quantities t o
the mesh using eg.

1
p - - rn;W(x; - zg).

"-v, p

4. solve the navier stokes equations on the mesh using finite differences.

5. construct a velocity and energy for each particle using eg.

u; = - p , W (X , - Xi).
9

6. move the particles by solving

dx;
= u;. -

d t

7. begin cycle again at 1.

Mass density information goes just one way, from the particles to the
grid. Mass is a lagrangian variable so mass diffusion is eliminated. However
particle momentum and energy information is replaced every timestep by
new values interpolated from the grid solution of the fluid equations. It
is this transfer backwards and forwards which made the old style PIC so
diffusive.

Modern fluid PIC, like FLIP, makes momentum and energy lagrangian
variables also. This is achieved by solving fluid equations on a lagrangian
grid, (ie. a grid which moves with the local fluid velocity), then updat-
ing rather than replacing the particle velocities and energies using the grid
solution.

FLIP(Fluid Implicit Particle, Brackbill et al) is an implicit lagrangian
code with adaptive re-zoning. It is less accurate than finite difference meth-
ods where they apply. It is also more expensive. However it still retains its
advantage over finite difference methods where contact discontinuities and
material interfaces are important.

EPIC(Ephemera1 PIC, Eastwood) is an alternative low dissipation fluid
PIC approach. It is finite element based, using an anti-diffusion step t o
remove momentum and energy diffusion.

45

8 Application to Incompressible Fluid Flow - the
Vortex Method

By definition, for incompressible flow

v p = o

and by implication from the mass continuity equation

v.u=o.
We can therefore write u as

u = v x +

where + is the stream function. The momentum equation is

d u
d t

p- = v p

and the vorticity is defined as

w = v x u

We can show that vorticity is a conserved property of a fluid element in
incompressible flow, ie.

d 1 -v x u = --v x v p
d t P

and since V x V f = 0 for any function f we have

d w - = o
d t

In 2D, u, = 0 and d / d z z 0, so

w = -V2(&k).

So for an element of fluid to which we assign a vorticity uzk) the equations
of motion are

d x
d t

= u -

46

u = v x ($&)

02& = -w,

ie. the same equation structure as for a 2D electrostatic plasma. 3D vortex
methods involve tracking vortex tubes. This is not a simple generalization
of the 2D method. A comprehensive review of the vortex method is given
by Leonard [5].

9 Parallel PIC

To understand how to optimize a PIC code for a particular architecture we
need to understand how the processors and data memory are configured.
We can think of our parallel computer as a system of data memory which
feeds data to and receives data from a set of arithmetic processing units.
This memory system can include

0 registers on processor

e cache on processor

0 distributed RAM.

Each of these components have significantly different access times. The
trick in optimizing the code is to tailor the algorithm and data layout to the
machine in such a way as to keep the largest possible number of processors
working effectively while reducing their access times to the data which they
need.

In the most abstract sense, we have an algorithm and a data structure
to map to the architecture. The four basic steps in a PIC algorithm are

1. assign particle charge(mass) to the mesh

2. solve for the force field on the mesh

3. interpolate force from the mesh to the particle positions

4. push the particles.

In combination these four steps involve computation and communication
between two different data structures. The field data has the qualities of
an ordered array in the sense that each element has specific neighbors. The
particle data has the qualities of a randomly ordered vector, in which element

47

i refers t o particle i , and no element has any special relationship t o its
neighbors in the vector.

Steps 2 and 4 are parallelizable in rather obvious ways, since they involve
only simple and completely predictable data dependencies, and do not couple
the two data structures. Steps 1 and 3 however do couple the two data
structures, with complicated and unpredictable data dependencies which
evolve during the simulation. It is these steps which invariably dominate
the execution times of parallel PIC codes.

There is one further observation to make before we discuss implementa-
tion specifics. On a serial machine our code will execute its computational
workload in a time which is independent of any correlations in the spatial
locations of the particles. This is not true on parallel machines. Particle
clustering can create communication and/or computational hot-spots which
impair performance. For example, an algorithm which works very efficiently
for an homogeneous plasma application may be very inefficient for a highly
clustered gravitational N-body problem. This can be an important factor
in choosing an algorithm.

On a specific parallel machine, many factors will influence a codes per-
formance. Machine architecture is unquestionably the most important. It
would be appealing to present the best techniques for each of the broad ar-
chitecture classes, such as SIMD (Single Instruction Multiple Data), MIMD
(Multiple Instruction Multiple Data) with distributed memory and MIMD
with shared memory. However such a clean presentation would be mislead-
ing. Even within these broad classes there are more minor architectural
differences which can cause us to favor different algorithms. Differences in
compilers, both in terms of functionality and maturity,8 add to the problem.

So we will not attempt such a general description of preferred parallel
algorithms. Instead we will examine how PIC codes have been parallelized
on three specific machines. These techniques should serve as suggestions
rather than rules, when we approach other machines. The three paralleliza-
tion tasks we will consider are vectorizing the code for a powerful vector
machine such as the Cray YMP series, implementing it on the MasPar’s
SIMD architecture, and on a distributed memory MIMD machine, Intel
Touchstone Delta.

8Many of the parallel machines and parallel compilers are in the earliest stages of their
development.

48

9.1 Veetorization

Three of the four basic steps of a PIC code (steps 2,3 and 4 above) are
almost trivially vectorizable.

The particles are pushed by looping over the particles in sequence and
pushing each in turn. Since each particle push is independent these loops
vectorize. Highly efficient vectorized field solvers (eg fft’s or multigrid) exist
in various libraries(eg IMSL,NAG,ELLPACK) and we need not consider this
any further. The force interpolation is a gather operation. Again we can
loop over the list of particles, fetching the force values for the cells in the
neighborhood of the particle. There are no data dependencies which will
inhibit vectorization.

The only PIC code step which is not easily vectorizable is the charge
deposition step. In a serial implementation we would loop over the list of
particles in turn, determining where each particle is located in the mesh and
then distributing contributions to the charge density of the mesh cells in the
immediate vicinity of the particle. This loop will not vectorize automatically
because it is possible that two particles might try to add charge to the same
mesh cell at the same time. We can solve this problem in more than one way.
The choice of solution depends on how often particles in the vector pipeline
will try to add charge to the same mesh cell. If this is a regular occurrence
then the best solution is to pre-sort the particles. We will illustrate one
way to do this using an algorithm devised by Horowitz [7]. However if it is
a rare occurrence then we can test for when this happens and only inhibit
vectorization when those particles are in the vector pipeline.

9.1.1 Pre-sorting

For simplicity consider a 1D model using NGP weighting. Assume there
are ng particles in mesh cell number g. In this approach these particles are
numbered from 1 to ng. This is repeated for all the cells in the mesh. From
these lists we form a number of particle groups. Group one contains all the
particles numbered 1, group two all the particles numbered 2, and so on.
Now loop over particle group 1. Each particle deposits its charge into the
mesh cell t o which it belongs. Since no two particles in group 1 belong in the
same mesh cell we know that two particles can never be writing to the same
array element at the same time, and we can force the loop over particles in
the group t o vectorize. We repeat this process in turn for all the particle
groups. The only part of this algorithm which does not vectorize is the

49

original grouping of the particles. It is easily extended to higher dimensions
and to cope with higher order charge assignment schemes such as CIC.

Additional memory space is required to store the particle lists (and ex-
t r a charge density arrays in the case of higher order charge assignment).
Horowitz discusses how the algorithm can be tuned to trade-off between
CPU performance and memory usage as resources might dictate.

9.1.2 Dependency Testing

Again, let us consider the 1D model with NGP weighting.
deposition would be achieved by the Fortran 77 loop

The charge

do i=l,npart
rho(index(i)) = rho(index(i)) + q(i)
enddo

where index(i) is the mesh cell to which particle i with charge q(i) be-
longs, and rho (j) is the charge in mesh cell j . This scatter-with-add loop
has potential vector dependencies, since index is not known until run time
and changes during the simulation.

We break this loop into sections of length nblock.

do il=l,npart-nblock+l,nblock
do i=il,il+nblock
rho(index(i)) = rho(index(i)) + q(i)
enddo

enddo

Now consider one of these short inner blocks. We will test this inner loop
to see if any vector dependencies actually occur within it. First we set up
a temporary integer array, itemp, which has as many elements as there are
cells in the mesh. We also set up two temporary integer arrays ia and ib of
length nblock, with ia(i)=i. Now we use the appropriate nblock elements
of index to scatter ia into itemp, forcing vectorization and accepting any
overwrites which might occur.

cdir$ivdep
do i=il,il+nblock
itemp(index(i)) = ia(i>
enddo

50

Then we t ry t o reverse the scatter operation, by gathering elements of itemp
into ib, under the influence of index.

do i=il,il+nblock
ib (i) =it emp (index (i))
enddo

If no overwrites occured during the scatter operation, then the gather step
exactly reverses the scatter and so ia and ib should be identical. In that
case, for this particular block, we can safely force the inner loop to vectorize
using a compiler directive. However if ia and ib differ anywhere, we have
detected a vector dependency and the inner loop must execute in serial
order.

Based on the success or failure of this test for each block, we can branch
t o a copy of the inner loop either with or without a preceeding compiler
directive to ignore vector dependencies.

This scheme enables us to vectorize the charge deposition task over vector
lengths nblock. Of course the test involves an additional overhead of a
vectorized scatter and a gather step, so we would only consider it if we
expected the test t o find no vector dependencies much of the time. For a
random spatial distribution of particles the chance that two or more particles
in the same block will t ry to add charge to the same cell is determined by
the ratio of nblock t o the number of cells in the mesh. For performance
reasons we would like t o keep ia and ib in vector registers which means
that nblock will be set t o the vector pipeline length. On the Cray C90 that
means nblock = 128. nblock will be much smaller than the number of mesh
points for all but the smallest 1D meshes. As a consequence, the benefit of
the improved vectorization should far outweigh the overhead associated with
the test.

No changes are required to apply this scheme in 2 or 3D, and minor
modifications can accomodate higher order charge assignment schemes.

9.2 SIMD Implementation

The MasPar MP-2 has a SIMD architecture with up t o 16384 (128 x 128) pro-
cessors. The nominal peak performance of a 128 x 128 machine is 6.2Gflops.
Each processor has 64Kb of dedicaked data memory. The processors are ar-
ranged in a 2D array with dimensions which are integer increments of 32, ie

Cray’s cf77 compilation system automatically implements this solution.

51

32, 64, 96 or 128. Straightline connections, known collectively as the X-net,
exist between processors in the north, south, east, west, north-east, south-
east, south-west and north-west directions. At the edges of the processor
array the X-net wraps around so that the array has the same topology as
the surface of a torus. Inter-processor communications can be achieved in
one of two ways. The global router can be used for more complex patterns
or for communication between widely spaced processors, while for regular
patterns over short distances the X-net communications are much more ef-
ficient. The MasPar series broadens the definition of SIMD in at least one
important way. It enables indirect addressing within a processor memory.

On a distributed memory machine, such as the MasPar, data layout
across processor memory is an integral part of algorithm design. For PIC
codes, once we have chosen the layout of the field arrays and particle data
we have essentially set the computational and communication workload for
each processor during each of the steps of the code. The challenge on the
MasPar is to spread the computation and communication workload as evenly
as possible, while minimizing the amount of global router communication
required."

The field arrays will be laid out so as to optimize the field solver routine.
We do not need to consider the fine details of this layout, which will vary
depending on the exact size of the physical mesh and the size of the processor
array. All we really need to recognize is that any acceptable layout will
establish a mapping between physical mesh points and the processor array
so that it includes most if not all the processors, and that nearest neighbor
mesh cells will map to processors which are no further apart than nearest
neighbors. For example if we have a 3D mesh of size 128 x 128 x 128 and
a processor array of size N,,,, = 128 x 128, we could map cell (i , j , k) into
processor (i, j) .

The major design question which faces us is how to distribute the particle
data. There are some obvious choices which focus either on computational
load balance or on efficient interprocessor communication [9].

9.2.1

The first option is t o parcel the particles out evenly amongst the proces-
sors, paying no attention to their physical locations. This achieves the best

''A plural floating point multiply takes 40 clocks on the MP-2, an X-net operation send-
ing a real number a distance of 1 processor takes 41 clocks, and a random communication
pattern using the global router, with all processors participating takes N 5000 clocks.

Uniform Load Balance - with communication hotspots

52

computational load balance during the particle push and during the purely
computational parts of the charge deposition and force interpolation tasks.
It also makes memory management easier, since we know exactly how much
memory we will need in every processor.

However it makes very heavy use of the global router for interprocessor
communication. Any given particle can potentially seek to deposit charge
on any of the processors in the processor array. For example if we use CIC
for a 3D model, each particle has 8 charge contributions to distribute to a
2 x 2 x 2 block of elements somewhere in the charge array. We can pack these
8 components into a message which is then sent by the global router to one
of the processors storing the 2 x 2 x 2 block, which then distributes them,
as required among its neighboring processors using the X-net. Similarily
during the force interpolation the particle needs to interpolate between the
24 field components associated with the same 2 x 2 x 2 block (ie 8 components
for each of the z,y and z directions). It is actually more efficient to pack
the particles coordinates into a message, send them to a processor in the
2 x 2 x 2 block, collect the 24 components there using X-net, compute the
interpolated field values, pack them into a reply, and send the reply back to
the originating processor using the router.

This scheme is slow because of its extensive use of the global router,
and it scales poorly in situations where clustering occurs. Communication
hotspots occur when a large number of messages are being sent to the same
processor at the same time. The processors can only process one router
message at a time. If n p particles are actually located in cells which map
into processor p , then processor p will need to receive n p messages during
that timesteps charge deposition. This algorithm therefore will scale as
ng,,,, the maximum value of n p across the processor array.

9.2.2 Uniform Load Balance - without communication hotspots

We can improve the scaling of the charge deposition by using a combination
of a sort and a segmented vector scan-add [3]. This approach is easiest to
explain for NGP charge assignment in the simple case where we have N p
particles and an equal number of processors.

Before we start we associate a unique id number ID;j = i + (j - l)Nx +
(k - l) N , N , with each mesh cell (i , j , k) , where N , and N y are the z and
y dimensions of the mesh. As before we distribute the particles uniformly
amongst the processors, with, in this example, one particle per processor.
We think of the particle data and the mesh as long vectors. We set up

53

another integer vector containing the particle cell ids. This vector is sorted in
order of increasing cell id and the permutation required to sort it is recorded.
Now we apply the same permutation to the remaining particle data vectors.
This permutation rearranges the one to one association between particles
and processors. Because this is a permute operation it has no communication
hotspots. It is performed using the global router. When this step is complete
the particle vector is composed of a sequence of blocks of varying lengths.
Each block is a contiguous list of particles whose spatial locations map to the
same mesh cell, and each block is stored in a contiguous block of processors
with one particle per processor. We can now use a segmented vector scan-
add operation to sum the charge in each block. This can be written using
X-net calls, and scales as In nkax. One possible choice of sorting algorithm
is a split-radix sort which scales as In N p .

The force interpolation can also be handled using a scan function t o
achieve a scaling with lnnkax. The first particle in each block fetches the
components of the field from the mesh cell corresponding t o the particle’s
cell id. Since no processor receives more than one request there are no
communication hotspots during this fetch. Then we use a segmented scan-
copy t o copy these values to every other particle in that particle block.

This scheme is easily extended to accomodate higher order charge de-
position algorithms and cases where the number of particles and processors
differ. It is slow because the sort operation is slow, and will not compete
with the other schemes outlined here for simulations without severe particle
clustering. However in cases with severe clustering it may be the only viable
choice because it is free of communication hotspots.

9.2.3 A Particle Migration Strategy

The schemes we have outlined so far all make heavy use of the global router.
We can avoid the router completely if we distribute the particles amongst
the processors according to the same mapping used for the field arrays.

If a particle lies in cell (i , j , k) we store it on the processor to which we
mapped cell (i , j , k) . During the charge deposition, no particle will need
t o send charge any further than to a neighboring processor, and during
the force interpolation the mesh field values which the particle needs are
either on processor or stored by a neighbor. This enables us t o use X-net
communications exclusively. To maintain this locality we are required t o
migrate particle information from processor t o processor as the particles
move between mesh cells. Since our timestep constraint limits the distance

54

any particle can travel during that timestep to less than one mesh cell width,
the migration can be achieved efficiently using the X-net.

There are of course drawbacks associated with this scheme. The ad-
ditional code needed t o perform the particle data migration makes the al-
gorithm more difficult t o program and debug. It also suffers from load
imbalance as particle clustering develops. In this case both the communica-
tion and computation costs scale as nLaz. Processor memory management
is tricky. We have to allocate enough memory that the most heavily popu-
lated processor does not run out of memory. However this means that a lot
of memory space in other processors will be allocated and never used.

This scheme has proven to be significantly faster than the others we have
described when applied to relatively uniform spatial particle distributions.
This is a testament to the relative efficiency of X-net communications when
compared to global router communications.

One possible solution to its memory management weakness is to supple-
ment this scheme with a ba,ckup routine similar to that used in the uniformly
load balanced technique above. Two distinct particle populations are iden-
tified, those which have been migrated successfully(popu1ation I) and those
which have not(popu1ation 11). We use the migration strategy wherever pos-
sible. Any population I particle which tried to migrate to a processor whose
memory was already full is left where it is and relabelled as population 11.
After we deposit the population I charge to the mesh, we use the global
router t o deposit charge from any population I1 particles. Similarily, when
we have completed force interpolation for the population I particles we use
the router approach to find the forces for any population I1 particles. At
regular intervals (ie every 10 timesteps perhaps), we test t o see if the pop-
ulation IT paxticles might now be placed into the correct processors and so
transferred back to population I. This hybrid scheme enables us to minimize
memory wastage.

9.3 MIMD Implementation

MIMD systems present us with a more coarse grained parallelism. A MIMD
machine will have somewhere in the range of 10 t o 2000 microprocessors,
each capable of running their own instruction stream. In principle, this intro-
duces the possibility of using control decomposition(ie farming out separate
tasks to different processors) as well as data decomposition. In practice the
mandatory time ordering of the separate tasks in a PIC code leaves too little
flexibility t o make much use of control decomposition. However the separate

55

instruction streams do enable SPMD (Single Program Multiple Data) style
programming, and as we shall see this can prove useful in optimizing load
b alan ce .

As with SIMD, our design goals are to keep as many of the processors
as we can busy doing productive work. In choosing a data decomposition
strategy we must bear in mind that we have many fewer processors than
in the SIMD machine, that these processors ,are considerably more powerful
computationally than their SIMD counterparts, and come with larger local
memory banks. As a result, the balance between computation and interpro-
cessor communication implied by our data decomposition must be struck
somewhat differently than in our SIMD approach. It may also be necessary
to dynamically reconfigure the data decomposition as the solution evolves,
since the load imbalance penalty for a poorly fitting decomposition becomes
more severe when we are working with fewer processors. The overhead for
this dynamic load balancing must be factored into our analysis.

We will discuss two specific MIMD PIC implementations. The first uses
separate domain decompositions for particle related operations and for the
field solver, at the cost of the extra communication required to share data
between the two. The second approach uses only one decomposition. Both
can perform dynamic load balancing.

9.3.1 A Dual Decomposition

The first example we have chosen to study is the ‘General Concurrent PIC
code’ developed by Liewer et a1 [lo] [ll]. They have run this code on a
number of machines including the Intel Touchstone Delta.

The Delta features 576 i860 microprocessors, each placed at a node of
a regular 2D communication grid. Each processor has 16Mbytes of RAM,
and in principle can achieve a peak of 80Mflops (single precision), although
sustained performance is typically 5 10% of peak.

Interprocessor communication is achieved by exchanging packaged mes-
sages. This message passing can be either synchronized amongst the proces-
sors or asynchronous. It is not significantly more expensive for a processor
t o communicate with a distant processor than with a near neighbor. There
is a significant setup overhead associated with each message sent, so it is
better t o send a few long messages than a lot of short ones. The cost of a
message increases with the length of the message, so it is advantageous t o
eliminate any unnecessary communication.

For simplicity, we will assume a 2D model covering a rectangular physical

56

domain. The algorithm uses two separate data decompositions, the first to
ensure that the particle push, charge deposition and force interpolation tasks
are effectively load balanced, and the second to ensure that the field solve
is load balanced.

First the physical domain is divided into sub-domains, with one sub-
domain assigned to each processor, and with roughly equal nurnbers of par-
ticles in each sub-domain. For non-uniform particle distributions these sub-
domains will not have equal areas and will contain different numbers of
mesh points. Each processor is responsible for storing the data describing
the particles in its sub-domain and for integrating their equations of motion.
When a particle moves from one sub-domain to another the information de-
scribing the particle must be migrated to the appropriate processor. The
processors also store the values of the electric field and charge density at the
mesh points in their sub-domain, including any guard cells immediately out-
side the sub-domain boundaries which may be required. As the simulation
evolves and particles move between sub-domains the sub-domain boundaries
are adjusted at regular intervals to maintain roughly equal numbers of par-
ticles in each sub-domain. This guarantees that the particle push will be
very evenly load balanced.

Because we are almost certain to have unequal numbers of mesh points
in each of these ‘primary’ sub-domains, the field solver will not be load
balanced. Therefore a secondary domain decomposition is established to
suit the requirements of the field solver. Exactly what this decomposition is
will depend on the technique used to solve Poisson’s equation, but it is most
likely t o divide the mesh cells equally amongst the processors, in contiguous
blocks. These ‘secondary’ sub-domains do not change during the simulation.

At the start of a timestep the particles deposit their charge to the mesh
cells in their primary sub-domain. Because this information is needed by
the field solver, and because the primary and secondary sub-domains do not
necessarily coincide, this requires some inter-processor communication. The
data which processor A must send to processor B is packaged together into a
send buffer at A and then sent to B. When it arrives it is unpacked and stored
appropriately. The field solver executes and the electric field is determined
for every mesh point in the secondary sub-domains. The communication
pattern is then reversed and the field values for the mesh points in the
primary sub-domains are updated. At this point the forces on the particles
can be evaluated by interpolation from the mesh using local data only. Then
the particles are pushed. The final step is to transfer particle information
between processors for any particles which have moved to a different primary

57

sub-domain. Again this is done by packaging the information into longer
messages in order to amortize the message start-up costs.

The selection of sub-domains is chosen so as to minimize inter-processor
communication. There is no unique preferred solution to this problem. It
is model dependent. Generally speaking, increasing the ratio of sub-domain
area to boundary length (or volume to surface area in 3D) minimizes the
percentage of particles which migrate between sub-domains. However if this
reduces the overlap between primary and secondary sub-domains there will
be more data to be communicated before and after the field solver is called.
In some simulations particles tend to move in a preferred direction and then
it pays to use long thin sub-domains aligned along this direction.

The details of the dynamic adjustment of the primary sub-domain bound-
aries obviously depend on how we choose to configure the sub-domains. Be-
cause there is an overhead associated with this adjustment, it should only be
done when the load imbalance has exceeded some threshold value for which
the resulting gain in performance outweighs the overhead. Since we wish to
equalize the number of particles in each domain we need to know how many
particles are in each sub-domain. This information can be accumulated with
almost no extra effort during the charge deposition task, by also calculating
the particle number densities at the mesh points. Then each processor sums
the number densities over all the mesh cells in its sub-domain.

9.3.2 A Single Decomposition

In this case a single domain decomposition is used for both particles and
fields [12]. Since we do not keep a second copy of the field information this
requires less memory than the dual decomposition strategy. Inter-processor
communication is required to migrate particle information when particles
change sub-domains, to exchange guard cell field and charge density values,
and in the exchange of any field information required within the field solver.

The load on processor i is assumed to be of the form

L; = AN; + BM;

where N; is the number of particles and M; is the number of mesh points
in sub-domain i. A and B are constants which reflect the relative com-
putational and communication costs of particle related and mesh related
operations respectively. The objective is to adjust the sub-domain bound-
aries, and therefore N; and M; so that L; is the same for all sub-domains. It

58

is possible therefore that one processor might spend more of its time on par-
ticles and less on mesh points than another processor, and yet both would
complete the timestep at the same time. This benefit cannot be realised
for electrostatic codes because the global character of Poisson’s equation
requires that the processors be synchronized both at the start and finish of
the field solver calculation. However electromagnetic codes can be built that
solve just local finite difference approximations to Maxwell’s equations ‘I.
These require less stringent processor synchronization. For example, at the
beginning of a timestep processors could accumulate current density (cur-
rent density not charge density is required), update interior field values and
push interior particles without requiring any information from neighboring
sub-domains. Since this accounts for most of the computational effort a
combined field/particle load balance is effectively possible. The remaining
steps, exchanging guard cell information, updating sub-domain boundary
field values and particles, and migrating particles would require some syn-
chronization between processors.

Electromagnetic models can be set up so that the solutions to cV x E = -aB/at and
CV x B = aB/at + J satisfy both Poisson’s equation and V . B = 0, provided both are
satisfied by the inital fields [13].

59

10 Acknowledgements

Thanks are due to a number of people who took the time to review the
manuscript and suggest improvements. These include Dr. Farzad Kaz-
iminezhad.

60

References

[l] R.W. Hockney and J.W. Eastwood, Computer Simulation Using
Particles, Institute of Physics, (1988).

[2] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer
Simulation, McGraw-Hill Inc., (1981).

[3] G.E. Blelloch, Vector Models for Data-Parallel Computing, MIT
Press, (1990).

[4] F.H. Harlow, “The Particle-in-cell Computing Method in Fluid
Dynamics”, Methods Comput. Phys., 3, 319, (1964).

[5] A. Leonard, “Vortex Methods for Flow Simulation”, Journal of
Computational Physics, 37, 289, (1980).

[6] R.W. Hockney, “Measurement of Collision and Heating Times in a
Two-Dimensional Thermal Computer Plasma”, Journal of Com-
putational Physics, 8 , 19, (1971).

[7] E.J. Horowitz, “Vectorizing the Interpolation Routines of Particle-
in-Cell Codes, Journal of Computational Physics, 68, 56, (1987).

[SI J. Binney and S . Tremaine, Galactic Dynamics, Princeton Univer-
sity Press, (1987).

191 D. W. Walker, “Characterizing the parallel performance of a
large scale, particle-in-cell plasma simulation code”, Concurrency:
Practice and Experience, 2, 257, (1990).

[lo] P. C. Liewer and V. K. Decyk, “A General Concurrent Algorithm
for Plasma Particle-in-Cell Simulation Codes”, Journal of Com-
putational Physics, 85, 302, (1989).

[ll] R. D. Ferraro, P. C. Liewer and V. K. Decyk, “Dynamic Load
Balancing for a 2D Concurrent Plasma PIC Code”, Journal of
Computational Physics, 109, 329, (1993).

[la] P. M. Campbell, E. A. Carmona and D. W. Walker, “Hierarchial
Domain Decomposition With Unitary Load Balancing For Elec-
tromagnetic Particle-In-Cell Codes”, Proceedings of the Fifth Dis-
tributed Memory Computing Conference, 943, (1990).

61

[13] J. Villasenor and 0. Buneman, “Rigorous charge conservation for
local electromagnetic field solver”, Computer Physics Communi-
cations, 69, 306, (1992).

62

Form Approved I REPORT DOCUMENTATION PAGE I OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions. searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information. including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, M: 20503

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED
Contractor Rc

I Particle-Mesh Techniques

6. AUTHOR(S)

Peter MacNeice I
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Hughes STX
4400 Forbes Boulevard
Lanham, Maryland 20706

9. SPONSORlNGIMONlTORlNG AGENCY NAME(S) AND ADDRESS(ES)

Goddard Space Flight Center
National Aeronautics and Space Administration
Washington , DC 20546-0001

Ort
5. FUNDING NUMBERS

Code 934

3. PERFORMING ORGANIZATION
REPORT NUMBER

9 5B 0007 2

IO. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

CR-4666

11. SUPPLEMENTARY NOTES

Peter MacNeice: Hughes STX, Lanham, Maryland

13. ABSTRACT (Wrnurn 200 words)

This is an introduction to numerical Particle-Mesh techniques, which are commonly used
to model plasmas, gravitational N-body systems, and both compressible and incompressible
fluids. The theory behind this approach is presented, and its practicle implementation, both
for serial and parallel machines, is discussed. This document is based on a 4-hour lecture
course presented by the author at the NASA Summer School for High Performance
Computational Physics, held at Goddard Space Flight Center.

14. SUBJECT TERMS 5. NUMBER OF PAGES

Computational Techniques, Particle Methods, Plasmas I 16. PRICE CODE I
I

17. SECURITY CLASSIFICATION 8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LlMl7'ATlON OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified ' Unclassified I Unclassified I Unlimited

Standard Form 298 (Rev. 2-89) .. _ _ _ _ _ t L _ I I L _ .. I,.....* ---a-#.--- NSN 7540-01 -280-5500

